您的浏览器目前处于缩放状态,页面可能会出现错位现象,建议100%大小显示。(快捷键:Ctrl+0)

当前位置:首页 > 图像设计 > 发表快报

Acc. Chem. Res.[双封面] - 北京大学潘锋教授

发布时间: 2019-8-29 来源: ACS

Title: Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control

Abstract

Conspectus

Lithium ion batteries (LIBs) not only power most of today’s hybrid electric vehicles (HEV) and electric vehicles (EV) but also are considered as a promising system for grid-level storage. Large-scale applications for LIBs require substantial improvement in energy density, cost, and lifetime. Layered lithium transition metal (TM) oxides, in particular, Li(NixMnyCoz)O2 (NMC, x + y + z = 1) are the most promising candidates as cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety. In order to further boost Li storage capacity, a great deal of attention has been directed toward developing Ni-rich layered TM oxides. However, structural disorder as a result of Ni/Li exchange in octahedral sites becomes a critical issue when Ni content increases to high values, as it leads to a detrimental effect on Li diffusivity, cycling stability, first-cycle efficiency, and overall electrode performance. Increasing effort has been dedicated to improving the electrochemical performance of layered TM oxides via reduction of cationic mixing. Therefore, it is important to summarize this research field and provide in-depth insight into the impact of Ni/Li disordering on electrochemical characteristics in layered TM oxides and its origin to accelerate the future development of layered TM oxides with high performance.

In this Account, we start by introducing the Ni/Li disordering in LiNiO2, the experimental characterization of Ni/Li disordering, and analyzing the impact of Ni/Li disordering on electrochemical characteristics of layered TM oxides. The antisite Ni in the Li layer can limit the rate performance by impeding the Li ion transport. It will also degrade the cycling stability by inducing anisotropic stress in the bulk structure. Nevertheless, the antisite Ni ions do not always bring drawbacks to the electrochemical performance; some studies including our works found that it can improve the thermal stability and the cycling structure stability of Ni-rich NMC materials. We next discuss the driving forces and the kinetic advantages accounting for the Ni/Li exchange and conclude that the steric effect of cation size and the magnetic interactions between TM cations are the two main driving forces to promote the Ni/Li exchange during synthesis and the electrochemical cycling, and the low energy barrier of Ni2+ migration from the 3a site in the TM layer to the 3b site in the Li layer further provides a kinetic advantage. Based on this understanding, we then review the progress made to control the Ni/Li disordering through three main ways: (i) suppressing the driving force from the steric effect by ion exchange; (ii) tuning the magnetic interaction by cationic substitution; (iii) kinetically controlling Ni migration.

Finally, our brief outlook on the future development of layered TM oxides with controlled Ni/Li disordering is provided. It is believed that this Account will provide significant understanding and inspirations toward developing high-performance layered TM oxide cathodes.

客服:400-070-3060