您的浏览器目前处于缩放状态,页面可能会出现错位现象,建议100%大小显示。(快捷键:Ctrl+0)

当前位置:首页 > 图像设计 > 发表快报

Adv. Sci. - 清华大学吴华强教授、高滨副教授,复旦大学微电子学院周鹏教授

发布时间: 2019-5-20 来源: WILEY-VCH

Title: A Threshold Switching Selector Based on Highly Ordered Ag Nanodots for X‐Point Memory Applications

Abstract: Leakage interference between memory cells is the primary obstacle for enlarging X‐point memory arrays. Metal‐filament threshold switches, possessing excellent selectivity and low leakage current, are developed in series with memory cells to reduce sneak path current and lower power consumption. However, these selectors typically have limited on‐state currents (≤10 µA), which are insufficient for memory RESET operations. Here, a strategy is proposed to achieve sufficiently large RESET current (≈2.3 mA) by introducing highly ordered Ag nanodots to the threshold switch. Compared to the Ag thin film case, Ag nanodots as active electrode could avoid excessive Ag atoms migration into solid electrolyte during operations, which causes stable conductive filament growth. Furthermore, Ag nanodots with rapid thermal processing contribute to forming multiple weak Ag filaments at a lower voltage and then spontaneous rupture as the applied voltage reduced, according to quantized conductance and simulation analysis. Impressively, the Ag nanodots based threshold switch, which is bidirectional and truly electroforming‐free, demonstrates extremely high selectivity >109, ultralow leakage current <1 pA, very steep slope of 0.65 mV dec−1, and good thermal stability up to 200 °C, and further represents significant suppression of leakage currents and excellent performances for SET/RESET operations in the one‐selector‐one‐resistor configuration.

客服:010-86468642